Functionalizing the Surface of Lithium-Metal Anodes
نویسندگان
چکیده
منابع مشابه
Advanced Micro/Nanostructures for Lithium Metal Anodes
Owning to their very high theoretical capacity, lithium metal anodes are expected to fuel the extensive practical applications in portable electronics and electric vehicles. However, unstable solid electrolyte interphase and lithium dendrite growth during lithium plating/stripping induce poor safety, low Coulombic efficiency, and short span life of lithium metal batteries. Lately, varies of mic...
متن کاملTowards High‐Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy
The formation of lithium dendrites induces the notorious safety issue and poor cycling life of energy storage devices, such as lithium-sulfur and lithium-air batteries. We propose a surface energy model to describe the complex interface between the lithium anode and electrolyte. A universal strategy of hindering formation of lithium dendrites via tuning surface energy of the relevant thin film ...
متن کاملInterconnected hollow carbon nanospheres for stable lithium metal anodes.
For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choic...
متن کاملAccommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface...
متن کاملDendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. However the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ChemPlusChem
سال: 2014
ISSN: 2192-6506
DOI: 10.1002/cplu.201402084